Tightness Results for Local Consistency Relaxations in Continuous MRFs
نویسندگان
چکیده
Finding the MAP assignment in graphical models is a challenging task that generally requires approximations. One popular approximation approach is to use linear programming relaxations that enforce local consistency. While these are commonly used for discrete variable models, they are much less understood for models with continuous variables. Here we define local consistency relaxations of MAP for continuous pairwise Markov Random Fields (MRFs), and analyze their properties. We begin by providing a characterization of models for which this relaxation is tight. These turn out to be models that can be reparameterized as a sum of local convex functions. We also provide a simple formulation of this relaxation for Gaussian MRFs. Next, we show how the above insights can be used to obtain optimality certificates for loopy belief propagation (LBP) in such models. Specifically, we show that the messages of LBP can be used to calculate upper and lower bounds on the MAP value, and that these bounds coincide at convergence, yielding a natural stopping criterion which was not previously available. Finally, our results illustrate a close connection between local consistency relaxations of MAP and LBP. They demonstrate that in the continuous case, whenever LBP is provably optimal so is the local consistency relaxation.
منابع مشابه
Duality and the Continuous Graphical Model
Inspired by the Linear Programming based algorithms for discrete MRFs, we show how a corresponding infinite-dimensional dual for continuous-state MRFs can be approximated by a hierarchy of tractable relaxations. This hierarchy of dual programs includes as a special case the methods of Peng et al. [17] and Zach & Kohli [33]. We give approximation bounds for the tightness of our construction, stu...
متن کاملUnifying Local Consistency and MAX SAT Relaxations for Scalable Inference with Rounding Guarantees
We prove the equivalence of first-order local consistency relaxations and the MAX SAT relaxation of Goemans and Williamson (1994) for a class of MRFs we refer to as logical MRFs. This allows us to combine the advantages of each into a single MAP inference technique: solving the local consistency relaxation with any of a number of highly scalable message-passing algorithms, and then obtaining a ...
متن کاملHinge-Loss Markov Random Fields and Probabilistic Soft Logic
This paper introduces hinge-loss Markov random fields (HL-MRFs), a new class of probabilistic graphical models particularly well-suited to large-scale structured prediction and learning. We derive HL-MRFs by unifying and then generalizing three different approaches to scalable inference in structured models: (1) randomized algorithms for MAX SAT, (2) local consistency relaxation for Markov rand...
متن کاملExactness of Approximate MAP Inference in Continuous MRFs
Computing the MAP assignment in graphical models is generally intractable. As a result, for discrete graphical models, the MAP problem is often approximated using linear programming relaxations. Much research has focused on characterizing when these LP relaxations are tight, and while they are relatively well-understood in the discrete case, only a few results are known for their continuous ana...
متن کاملApproximate MAP Inference in Continuous MRFs
Computing the MAP assignment in graphical models is generally intractable. As a result, for discrete graphical models, the MAP problem is often approximated using linear programming relaxations. Much research has focused on characterizing when these LP relaxations are tight, and while they are relatively well-understood in the discrete case, only a few results are known for their continuous ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014